Яка формула для оберненого sin x?

0 Comments

Sin Inverse x Формула, тобто sin θ = (протилежна сторона) / (гіпотенуза). Тоді за визначенням аверсинуса θ = sin1[ (протилежна сторона) / (гіпотенуза) ] . Як показано на зображенні нижче, щоб знайти міру кута θ, ми використовуємо формулу sin, обернену x, задану як θ = arcsin[ (протилежна сторона) / (гіпотенуза)].

Отже, він має обернену функцію, позначену f(x)=sin−1x, який читається як арксинус x. (Цю обернену функцію також часто позначають arcsinx.)

Диференціювання sin-інверсії x — це процес обчислення похідної sin-інверсії x або визначення швидкості зміни sin-інверсії x по відношенню до змінної x. Похідна оберненої функції за синусом записується як (sin-1x)' = 1/√(1-x2), тобто похідна sin, обернена x, дорівнює 1/√(1-x2).

Що таке інтеграл Sin Inverse? Обернений інтеграл sin визначається як x sin-1x + √(1 – x2) + C, де C – константа інтегрування. Математично обернений інтеграл sin записується як ∫arcsin x dx = ∫sin-1x dx = x sin-1x + √(1 – x2) + C.

Знаходження оберненої функції 1) Замініть f(x) на y. 2) Поміняти незалежну змінну x на залежну змінну y. Це дає x=y2−1 x = y 2 − 1 . 3) Переставте функцію, щоб зробити залежну змінну y предметом.

Формула sin аверс x Тоді за визначенням арксинуса, θ = sin-1[ (протилежна сторона) / (гіпотенуза) ] . Як показано на зображенні нижче, щоб знайти міру кута θ, ми використовуємо формулу sin, обернену x, задану як θ = arcsin[ (протилежна сторона) / (гіпотенуза)].